
Bayesian Approach

This supplement describes a Bayesian approach to estimating allele frequency from RNA-seq samples.

We explicitly correct for technical bias using a prior.

1 Model Specification

Let M denote D. melanogaster and S D. simulans. We propose a Bayesian model based estimation of the S

allelic frequency, θ. The model combines information from each biological replicate i and corrects for possible

bias attributable to technical and biological factors. Technical factors include sequencing biases, mapping

bias and any other effect that casuses the measurement to be biased. Biological factors include things such

as gene duplications that differ among species. The observed reads from the DNA samples will encompass

both of these sources of bias, as would controls based upon mixed parental samples. The DNA control is

used as the prior to correct for such biases. While we refer to DNA throughout, the same approach could

be used when mixed parental RNA samples are used as a control.

In order to define the model we introduce the following notation:

Xi = number of reads from M in the RNA for biorep i,

li = number of reads from S in the RNA for biorep i,

Yi′ = number of reads from M in the DNA for biorep i′,

ki′ = number of reads from S in the DNA for biorep i′,

θ = S allele frequency in the RNA,

i = 1, . . . I, i′ = 1, . . . I ′. I the total number of RNA biological replications and I ′ the number of DNA

biological replications.

The following RNA model is assumed:

Xi|li, θ ∼ NegativeBinomial(li, θ)

θ|p ∼ Beta((1 − p)t, pt) and l1, . . . , lI |λ
iid
∼ Poisson(λ)

λ ∼ Gamma(aλ, bλ)
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The following DNA model is assumed:

Yi′ |ki′ , p ∼ NegativeBinomial(ki′ , p)

p ∼ Beta(v, v) and k1, . . . , kI′ |δ
iid
∼ Poisson(δ)

δ ∼ Gamma(aδ, bδ)

The RNA and DNA models are connected by the common parameter p, the probability of sequencing

and mapping the allele S in the DNA sample. In the DNA model, p is a parameter to be estimated. In

contrast, in the RNA model p, is a hyperparameter.

The expectation in a heterozygous DNA sample is p = 0.5. When p is greater (lower) than 0.5 the bias

is towards S (M). The distribution of θ in the RNA model is then centered below (above) 0.5, at 1 − p, to

correct for this.

The estimation of θ must take into account the RNA information as well as the DNA information. The

RNA information enters into the RNA model directly through the sample distribution. The DNA enters

into the RNA model through the hyperparameter p. Since we do not know p we are required to estimate it.

In order to do so we use the DNA model. That is a posterior value of θ, θm will be obtained by:

1. Generate pm from the posterior of the parameter p using the DNA model.

2. Generate θm from the posterior of θ in the RNA model with p = pm.

The hyperparameter t plays a fundamental role. The Beta((1 − p)t, pt) has mean 1 − p and variance

p(1 − p)/(t + 1), so t is a precision parameter. A standard interpretation of the hyperparameters of a beta

prior, adapted to our context, is that 1 − p is the rate of M reads and t + 1 the total number (M+S) reads

in an imaginary sample. If we want the prior to be as strong as the likelihood in the RNA model we require

t + 1 to be equal to the total number of RNA reads. With such a choice, the posterior expected value of θ

is [(1 − p) + total #S RNA reads/total # RNA reads]/2. For example, if p = 0.8 and the proportion of S

RNA observed reads is 0.8 as well, then the posterior expected value of of θ is 0.5. We, then, assume this

value for t, i.e., t =
∑

i(xi + li) − 1.

Here the Gamma(a, b) distribution has mean a/b. Besides, X ∼NegativeBinomial(l, θ), X ∈ {0, 1, . . . ,∞}

represents the number of “failures” before the first l “successes” and θ the success rate. The Negative binomial

distribution is a Poisson-gamma mixture. More specifically,

X ∼ NegativeBinomial(l, θ) ⇔ X ∼ Poisson(η) and η ∼ Gamma(l, θ/(1 − θ)).

The inference of θ is based on Markov chain Monte Carlo methods. We will use this representation of the Neg-

ative Binomial distribution in the Gibbs sampler scheme that simulates from the posterior distribution of the

model. That is we replace the first level of the RNA model by Xi|ηi ∼ Poisson(ηi) and ηi ∼ Gamma(li, θ/(1−

θ)). Analogously, we replace the first level of the DNA model by Yi′ |γi′ ∼ Poisson(γi′) and γi′ ∼ Gamma(ki′ , p/(1−

p)).
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Other notes:

1. The prior for p in the DNA model, beta(v, v), has mean 1/2 and variance 1/(4(v +1)). The parameter

v is free to choose. We choose v = 1 so the prior is uniform.

2. λ (δ) is the expected number of RNA (DNA) S reads for each one of the biological replications. We

recommend a vague prior for the gamma distribution of the parameters λ and δ. We used aλ = aδ = 1/2

and bλ = bδ = 1/2. The model is not sensitive to the value of these hyperparameters (not shown).

2 Complete Conditionals for Gibbs Sample

The likelihood functions of both models are:

LRNA(θ, η, λ, η|p, x, l, k)

∝

{

∏

i

Poisson(xi|ηi)

} {

∏
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}
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∏
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LDNA(p, γ, δ|y, k)
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2.1 Complete Conditionals for RNA Model

For the RNA model we get the following full conditionals for the Gibbs sampler:

p(ηi|all) ∝ e−ηiηxi

i ηli−1
i exp

(

−
θ

1 − θ
ηi

)

∝ ηxi+li−1
i exp

(

−

[

1 +
θ

1 − θ

]

ηi

)

∝ Gamma(ηi|xi + li, 1/(1 − θ))

p(λ|all) ∝

{

∏

i

e−λλli

}

λaλ−1e−bλλ

∝ e−(bλ+I)λλaλ+l·−1

∝ Gamma(λ|aλ + l·, bλ + I)

p(θ|all) ∝

{

∏

i

(

θ

1 − θ

)li

exp

(

−
θ

1 − θ
ηi

)

}

× θ(1−p)t−1(1 − θ)pt−1

∝

(

θ

1 − θ

)l·
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(

−
θ
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η·

)

× θ(1−p)t−1(1 − θ)pt−1

∝

(

θ

1 − θ

)l·+(1−p)t−1

(1 − θ)pt−1+(1−p)t−1 exp

(
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θ
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)

∝

(

θ
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(1 − θ)t−2 exp

(
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θ
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)

Setting u = θ/(1− θ) we get that θ = u/(1 + u) = 1 − 1/(1 + u) = 1 − (1 + u)−1 and dθ = (1 + u)−2 du and

p(u|all) ∝ ul·+(1−p)t−1

(

1 −
u

1 + u

)t−2

exp (−uη·) (1 + u)−2

∝ ul·+(1−p)t−1

(

1

1 + u

)t−2

(1 + u)−2 exp (−uη·)

∝ ul·+(1−p)t−1 (1 + u)
2−t

(1 + u)−2 exp (−uη·)

∝
1

(1 + u)t
ul·+(1−p)t−1 exp (−uη·)

∝
1

(1 + u)t
Gamma(u|l· + (1 − p)t, η·)

A Metropolis-Hasting algorithm was implemented to simulate from the posterior distribution of θ: Let θm
i

the value of θi in the mth Gibbs iteration:
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1. Set u = θm/(1 − θm)

2. Generate uc ∼ Gamma(l· + (1 − p)t, η·)

3. Compute

α =
p(uc|all)

p(u|all)
×

Gamma(u|l· + (1 − p)t, η·)

Gamma(uc|l· + (1 − p)t, η·)
=

(

1 + u

1 + uc

)t

4. Generate w ∼ uniform(0, 1)

5. If w < min{α, 1} set θm+1 equal to uc/(1 + uc) otherwise set θm+1 = θm.

Note that a disadvantage of the MH algorithm described above is the lack of a tuning parameter to control

the acceptance ratio. If t is large, as it will be the case in our application, the algorithm above is not good.

The acceptance ratio is too low. We then appeal to the standard MH. That is we replace steps 2 and 3 by:

2. Generate uc ∼ Normal(u, σ2
θ) The standard deviation of the “proposed distribution”, σθ, is chosen such

that the acceptance ratio is between 0.25 and 0.75.

3. If uc is less than zero set α = 0 otherwise,

α =
p(uc|all)

p(u|all)
=

(

1 + u

1 + uc

)t
Gamma(uc|l· + (1 − p)t, η·)

Gamma(u|l· + (1 − p)t, η·)

2.2 Complete Conditionals for DNA Model

For the DNA model we get the following full conditionals for the the Gibbs sampler: Analogous to ηi in the

RNA model,

p(γi′ |all) ∝ Gamma(γi′ |yi′ + ki′ , 1/(1 − p))

with k· =
∑

i′ ki′

Analogous to λ,

p(δ|all) ∝ Gamma(δ|aδ + k·, bδ + I ′)

with l· =
∑

i li, and finally,

p(p|all) ∝

{

∏

i′

(

p

1 − p

)k
i′

exp

(

−
p

1 − p
γi′

)

}

× pv−1(1 − p)v−1

∝

{

p

1 − p

}k·

pv−1(1 − p)v−1 exp

(

−
p

1 − p
γ·

)

Again we use a standard Metropolis-Hasting algorithm to simulate from the complete conditional poste-

rior distribution of p. Let pm the value of p in the mth Gibbs iteration:
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1. Sample pc ∼ N(p, σ2
p) where σ2

p is chosen by trial and error such that the acceptance ratio of this MH

algorithm is between 0.25 and 0.75.

2. If pc < 0 set α = 0 otherwise, α = p(pc|all)/(p|all)

3. Generate w ∼ Uniform(0, 1) and set pm+1 = pc if w < α, otherwise, set pm+1 = pm.

3 Experimental Analysis

Experimental data were analyzed using the above Bayesian model. Exons were filtered according to criteria

described in the main text (n=14,452) and included a coverage floor of 100 reads per exon. As expected

exonic coverage was greater for RNA than DNA and there were more exonic regions with more reads in the

RNA (Figure S3).

There is no obvious bias in the estimate of θ across the range of read counts in these data (Figure S4).

As expected from the model specifications, the width of the 95% credible interval (CI) decreases as the

number reads for RNA/DNA increases (Figure S5). For DNA, once the number of reads is above ∼ 3, 500,

the average CI width is 0.034. This average exon size for these exons is 3, 611 nt, for coverage of greater

than 52 reads per nucleotide (Figure S4).

In the RNA, the average credible interval width declines as the number of RNA reads increases until

approximately ∼ 10, 000. When RNA coverage is very high, there is an increased variation of the CI width

and some intervals are quite large. This is likely a result of the mean variance relationship in the data, and

the low number of independent samples.

The results presented in the main text are for 1, 000 samples from the posterior distribution. Choosing

1, 000 samples from the posterior is common. Yet, if the posterior distributions are wide this may result

in lack of precision in determining the width of the 95% credible interval. This did not appear to be a

general problem for these data (Figure S5). Seven outliers were identified in the RNA (Figure S5) which are

likely due to lack of precision in the estimation of the posterior. To determine whether 1, 000 samples from

the posterior was sufficient, the Gibbs sampler was rerun using 10, 000 samples from the posterior(Figure

S5). As expected, the width of the credible interval for the seven outlying points was better estimated,

but the majority of the credible intervals were unchanged. Importantly, the inference for these 7 points

remained unchanged. We also examined all 14, 452 genes for changes in inference between 10, 000 and 1, 000

samples. While there were some changes for estimates close to 0.5, the number of genes significantly different

from 0.5 remained almost identical, and the bias (mel or sim) remained unchanged. Indicating that 1, 000

samples from the posterior were sufficient to accurately estimate the 95% credible interval in these data.

Running the Gibbs sampler for 1, 000 estimates of the posterior of each gene required about one days worth

of computation. The time increase is linear with the number of samples. As with any Bayesian approach,

the number of samples from the posterior is important and care should be taken to examine the behavior of

the estimates and credible intervals to insure that enough samples from the posterior have been taken.
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4 Simulation Study

We simulated data based on the experiment presented in this paper. An arbitrary set of 200 exons whose

three S RNA and DNA counts were positive (i.e. li, ki′ > 0, for i, i′ = 1, 2, 3) were selected. Based on these

counts, for every exon we simulated three RNA samples from M, this is,

xs
i ∼ NegativeBinomial(li, τ) for i = 1, 2, 3.

In terms of the model, an exon exhibits AI if τ 6= p. We set the simulation truth value of p equal to the

proportion of reads from S in the DNA sample, i.e., p =
∑

i′ ki′/
∑

i′(ki′ + yi′). Based on p and the observed

S DNA reads, we simulated three M DNA samples,

ys
i′ ∼ NegativeBinomial(ki′ , p) for i′ = 1, 2, 3.

In the simulated data set the first 100 exons have allelic imbalance. We set τ = 0.5 + 0.2 ∗ cos(4π(p − 1)).

The other 100 exons do not exhibit allelic imbalance, in other words we set τ = p. The simulated data are

then the same as the real data except for the number of M reads (the xis and yi′s). For the simulated data

we applied the proposed procedure and computed the central 95% credible interval (CI) for θ. If this CI

does not contain 0.5 we decide the exon has in AI. Figure S6 shows these CIs. There are 17 false negatives

and 2 false positive. The power to detect AI is proportional to the width of the CI and depends on the

number RNA reads. Therefore, it is not surprising, we are not able to detect AI when the RNA coverage is

low. We also notice that 6 out of the 100 exons with AI, exhibit prominent AI (the CI for θs are completely

contained in either (0,0.4) or (0.6,1)). While, in the real data set analyzed in this paper approximately 3%

of the exons flagged with AI, exhibit extreme AI.

Figure S8 shows estimated posterior probabilities of θ under four scenarios for observed (not simulated)

exons. These scenarios represent different levels of the total number of RNA and DNA reads. Figure S8

shows with fewer DNA and RNA reads, there is a flattening of the posterior distribution. We now explore

the estimates of θ with and without AI. Let θ̃ be the posterior expected value of θ. Figure S7 depicts the

density of θmax = max{θ̃, 1 − θ̃}, i.e., a smoothed version of the histogram of the estimates of θmax. We

consider this θmax since values of this quantity greater than 1/2 indicate AI (regardless of the direction).

The left panel of Figure S7 depicts the estimated density of θmax under AI. The right panel is the density of

θmax corresponding to the exons without AI. As expected, in contrast to the θmaxs of exons without AI, the

θmaxs corresponding to exons with AI tend to be greater than 1/2.
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Figure S3: Distribution of the number of reads from analyzed exons (n=14,452). Counts are summed over

all observations and the natural log of the sum was taken. Median number of DNA (RNA) reads 412 (682).
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Figure S4: The estimate of AI for RNA (1 − θ̂) is plotted on the y-axis. The x-axis is the number of reads

RNA (DNA) across all samples. Data are from exons analyzed with the Bayesian model (n=14,452).
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Figure S5: The relationship between credible interval (CI) width and number of reads. The y-axis is the

width of the 95% Bayesian credible interval. The x-axis is the number of reads in all samples. Data are from

exons analyzed with the Bayesian model (n=14,452). The left panel is for 1, 000 samples from the posterior

and the right panel is for 10, 000 samples from the posterior.
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Figure S6: Central 95% Credible intervals (CI) for θ. Only the first 100 simulated gene reads exhibit AI.

When this CI does contains 0.5 the gene is flagged as exhibiting AI. Darker CIs to the left (right) of the

noncontinuous line represent false negatives (positives). There are 17 false negatives and 2 false positive.

For reference we plot the horizontal line through 0.5.
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Figure S7: Smoothed histogram for the simulated data for θmax = max{θ̃, 1 − θ̃}, for exons with AI (right)

and without AI (left). Here θ̃ is the estimate (posterior mean) of θ. The θmaxs for exons with AI are farther

from 0.5 than exons without AI.
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Figure S8: Posterior Distribution of the proportion of S reads in the RNA samples, θ, in four scenarios with

different RNA and DNA total reads. The black long (grey short) arrow indicates the recorded proportion of

#S reads in the RNA (DNA) pooled samples. The black long arrow is a natural estimate of the proportion

of S reads in the sample if we do not considering DNA information.
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